»姓名:许明明 | »系属:测绘系 | |
»学位:博士 | »职称:副教授 | |
»专业:测绘科学与技术 | »导师类别:硕导 | |
»电子邮箱:xumingming@upc.edu.cn | ||
»通讯地址:青岛市黄岛区长江西路66号 kaiyun体育登录网页入口(华东)kaiyun体育登录网页入口 | ||
»概况: | ||
◎研究方向 混合像元分解 湿地遥感 浒苔监测 遥感水质监测
◎教育经历(倒序) 2011.09-2016.06 武汉大学测绘遥感信息工程国家重点实验室,博士,导师:张良培教授、杜博教授(摄影测量与遥感) 2007.09-2011.06 kaiyun体育登录网页入口(华东)地球科学与技术学院,学士(测绘工程)
2021.01 - 至 今 kaiyun体育登录网页入口(华东)副教授(测绘系) 2018.07 - 2020.12 kaiyun体育登录网页入口(华东)讲 师(测绘系) 2016.07 - 2018.06 kaiyun体育登录网页入口(华东)团队博士后(地质资源与地质工程)
◎学术兼职 以下国际期刊审稿人:TGRS、JSTARS、GRSL、Neural Networks、Neurocomputing、PLOS ONE、IEEE Access、The Egyptian Journal of Remote Sensing and Space Sciences、Photogrammetric Engineering & Remote Sensing、Geocarto International AAAI-19项目委员会成员 国家自然科学基金委评议人
◎主讲课程 数字摄影测量 摄影测量实习
◎指导研究生及博士后 硕2021:杨志如、祝晓芳、刘航 硕2022:邹鑫、贾梦雪、刘明威、张金淏
欢迎对遥感处理与应用方向感兴趣、有追求、有目标的研究生加入团队!
◎承担项目 1. 2021.01-2024.12 国家自然科学基金面上项目,NO.62071492,基于非线性混合模型的潮间带柽柳高光谱亚像元信息提取研究,主持 2. 2018.01-2020.12 国家自然科学基金青年基金项目,NO.61701542,基于原型分析理论的端元束提取及端元可变光谱解混研究,主持 3. 2017.07-2019.12 山东省自然科学基金博士基金项目,NO.ZR2017BF038,量子理论驱动的高光谱图像端元提取技术研究,主持 4. 2016.07-2018.07 博士后基金面上项目,NO.2017M622309,基于原型分析的线性及非线性高光谱混合像元分解研究,主持 5. 2016.08-2018.07 青岛市博士后资助项目,NO.2016213,基于智能优化算法的高光谱影像端元提取关键技术研究,主持 6. 2022.01-2024.12 自主创新科研计划项目(理工科),NO. 22CX01004A-4,高悬浮物浓度水质遥感反演算法和排污口监测,主持 7. 2017.01-2019.12 自主创新科研计划项目(理工科),NO.17CX02002A,顾及类内方差和地物局部分布的混合像元分解技术研究,主持 8. 2017.01-2019.12 集团项目(人才引进),NO.YJ201601028,融合空间光谱信息和尺度自适应的端元提取研究,主持 9. 2019.08-2020.06,横向项目,海上溢油影响评估数据应用技术与平台研发,主持 10.2020.01-2020.12,横向项目,近海海洋环境与极地海冰信息产品处理与分析软件,主持 11.2021.09-2022.09,横向项目,粤桂琼红树林遥感监测,主持
◎获奖情况 2018.09,2018 WHISPERS最佳论文奖(1/5),IEEE GRSS,顾及光谱变化的原型分析端元束提取方法 2021.04,地理信息科技进步奖(7/14),基于空地一体倾斜摄影的地质露头精细建模技术与应用
◎荣誉称号 2020.05,荣获“优秀青年工作者”荣誉称号,校团委
◎著作
◎论文 1. Xu, M.; Yang, Z.; Ren, G*.; Sheng, H.; Liu, S.; Liu, W.; Ye, C. L₁ Sparsity-Constrained Archetypal Analysis Algorithm for Hyperspectral Unmixing. IEEE Geoscience and Remote Sensing Letters 2022, 19, 1-5, doi:10.1109/LGRS.2022.3164054. 2. Li, H.; Wan, J.; Liu, S.; Sheng, H.; Xu, M.* Wetland Vegetation Classification through Multi-Dimensional Feature Time Series Remote Sensing Images Using Mahalanobis Distance-Based Dynamic Time Warping. Remote Sensing 2022, 14, 501. 3. Wang, D.; Wan, J.; Liu, S.; Chen, Y.; Yasir, M.; Xu, M.*; Ren, P. BO-DRNet: An Improved Deep Learning Model for Oil Spill Detection by Polarimetric Features from SAR Images. Remote Sensing, 2022, 14, 264. 4. Liu, S.*; Kong, W.; Chen, X.; Xu, M.; Yasir, M.; Zhao, L.; Li, J. Multi-Scale Ship Detection Algorithm Based on a Lightweight Neural Network for Spaceborne SAR Images. Remote Sensing, 2022, 14, 1149. https://doi.org/10.3390/rs14051149 5. Li Z, Shi S, Wang L, Xu M*, Li L. Unsupervised Generative Adversarial Network with Background Enhancement and Irredundant Pooling for Hyperspectral Anomaly Detection. Remote Sensing. 2022; 14(5):1265. https://doi.org/10.3390/rs14051265 6. Jianhua Wan, Jiajia Li, Mingming Xu*, Shanwei Liu, and Hui Sheng, Node-splitting optimized canonical correlation forest algorithm for sea fog detection using MODIS data, Opt. Express 30, 13810-13824 (2022) 2021年 1. Guo, X.; Wan, J.; Liu, S.; Xu, M*.; Sheng, H.; Yasir, M. A scSE-LinkNet Deep Learning Model for Daytime Sea Fog Detection. Remote Sensing, 2021, 13, 5163. 2. Xianci Wan, Jianhua Wan*, Mingming Xu*, Shanwei Liu, Hui Sheng, Yanlong Chen, Xiyuan Zhang, Enteromorpha coverage information extraction by 1D-CNN and Bi-LSTM networks considering sample balance from GOCI images, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, doi: 10.1109/JSTARS.2021.3110854.(SCI 2区) 3. 盛辉, 池海旭, 许明明*, 刘善伟, 万剑华, 王锦锦. 改进SVR的内陆水体COD高光谱遥感反演[J].光谱学与光谱分析,2021, 41(11):3565-3571.(SCI 3区) 4. Shanwei Liu, Chuanlong Ye, Qinting Sun, Mingming Xu, Zhongfeng Duan, Hui Sheng, Jianhua Wan. Detection of Geothermal Anomaly Areas with Spatio-Temporal Analysis Using Multitemporal Remote Sensing Data, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 14, pp. 4866-4878, 2021.(SCI 2区) 5. Ye, C.; Liu, S*; Xu, M.; Du,B.;Wan, J.; Sheng, H. An Endmember Bundle Extraction Method Based on Multiscale Sampling to Address Spectral Variability for Hyperspectral Unmixing. Remote Sensing 2021, 13, 3941.https://doi.org/10.3390/rs13193941 6. 张曦元,万剑华,刘善伟*,许明明. “利用GOCI卫星数据开展秦皇岛海域叶绿素a浓度反演”. 海洋环境科学,2021, 40(03):462-467.(核心) 2020年及以前 1. M. Xu*, Y. Zhang, Y. Fan, Y. Chen and D. Song, “Linear spectral mixing model guided artificial bee colony method for endmember generation,” IEEE Geoscience and Remote Sensing Letters, vol. 17, no. 12, pp. 2145-2149, 2020. (SCI 2区, IF= 2.893) 2. Y. Zhang, Y. Fan* and M. Xu*, A background-purification-based framework for anomaly target detection in hyperspectral imagery, IEEE Geoscience and Remote Sensing Letters. vol. 17, no. 7, pp. 1238-1242, July 2020. (SCI 2区, IF=2.893) 3. Y. Zhang, Y. Fan*, M. Xu*, W. Li, G. Zhang, L. Liu, D. Yu, An improved low rank and sparse matrix decomposition-based anomaly target detection algorithm for hyperspectral imagery, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 13, pp. 2663-2672, 2020. (SCI 2区) 4. M. Xu, B. Du and Y. Fan, Endmember extraction from highly mixed data using linear mixture model constrained particle swarm optimization, IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 8, pp. 5502-5511, 2019. (SCI 2区, IF= 5.63) 5. M. Xu, L. Zhang, B. Du, L. Zhang, Y. Fan and D. Song, “A mutation operator accelerated quantum-behaved particle swarm optimization algorithm for hyperspectral endmember extraction,” Remote Sensing, 9(3), 197, 2017. (SCI 2区, IF= 3.406) 6. M. Xu, L. Zhang, B. Du and L. Zhang, “An image-based endmember bundle extraction algorithm using reconstruction error for hyperspectral imagery,” Neurocomputing, vol. 173, Part 2, pp.397-405, January 2016. (SCI 2区, IF= 3.241) 7. M. Xu, L. Zhang and B. Du, An image-based endmember bundle extraction algorithm using both spatial and spectral information, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 8, no. 6, pp. 2607-2617, 2015.(SCI 2区, IF= 2.777) 8. M. Xu, B. Du, and L. Zhang, “Spatial-spectral information based abundance-constrained endmember extraction methods,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 7, no. 6, pp. 2004-2015, 2014.(SCI 2区, IF= 2.777) 9. D. Song, N. Sun*, M. Xu, B. Wang, and L. Zhang, Fast Unmixing of Noisy Hyperspectral Images Based on Vertex Component Analysis and Singular Spectrum Analysis Algorithms, Canadian Journal of Remote Sensing, vol. 46, pp. 34-48, 2020. 10.张燕,樊彦国,许明明,钟先金.一种利用均值匹配改进的高光谱异常检测方法[J].遥感信息,2020,35(01):99-104.(核心) 11.樊彦国,柴江龙,许明明*,王斌,侯秋实. 基于ORB与RANSAC融合改进的图像配准算法, 光学精密工程, 3: 197-212, 2019. 12. M. Xu, G. Zhang, Y. Fan, B. Du and L. Zhang, “Archetypal analysis for endmember bundle extraction considering spectral variability,” 9th IEEE GRSS Workshop on Hyperspctral Image and Signal Processing: Evolution in Remote Sensing, Amsterdam, The Netherlands, 2018, 09.23-09.26.(最佳论文奖) ◎专利 1. 许明明,杜博,张良培。一种基于量子粒子群的高光谱遥感影像端元提取方法,2018.06.19,ZL 201610157103.8 2. 杜博,许明明,张良培,张乐飞。一种高光谱遥感影像端元提取方法,2018.06.29,ZL 201610156222.1 3. 许明明,张燕,刘善伟。一种基于局部特征的低秩稀疏分解高光谱异常检测方法,2022.06.17,ZL 202010384573.4。 4. 许明明,杨志如,叶传龙,刘善伟。一种基于丰度稀疏约束的高光谱混合像元分解方法,ZL 202111059245.8 5. 许明明,叶传龙,刘善伟。一种高光谱遥感影像端元束自动提取方法,实审。 |